
hnfomation Tec hnp1~
Divisi~

OCT 3 11910

UNCLASSIFIED
AR-006-402

DSTOA
AUTRLIA.

ELECTRONICS RESEARCH LABORATORY

Information Technology
Division

18 .Au l-: _;,:';"; +,._ TO

TECHNICAL REPORT

ERL-0512-TR

GUMNUT SPECIFICATION AND REPORT

by

Richard A. Altmann, Michael A. Fitzgerald and Peter S. Keays

SUMMARY

Gumnut is a part of MultiView, an integrated programming environment. By means of a
number of tools operating possibly concurrently, over a distributed workstation network,
MultiView supports the development of software in a growing number of programming
languages. Gumnut and its associated meta-language (or language to describe a language)
is the tool which allows MultiView to be extended for a new programming language. This
report describes Gumnut and the meta-language.

© COMMONWEALTH OF AUSTRALIA 1990

MAY 1990 COPY No. -.

APPROVED FOR PUBLIC RELEASE

POSTAL ADDRESS: Director, Electronics Research Laboratory,PO Box 1600, Salisbury, South Australia, 5108.

ERL-0512-TR

ERL-0512-TR

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 G um nut . 1
1.3 Scope . 1

2 A bstract Syntax 3
2.1 D efinitions 3
2.2 Exam ple 4
2.3 Abstract Syntax Trees 4

3 The Gumnut Meta-Language 7
3.1 O verall Structure 7
3.2 D efinitions 7
3.3 Starting Phylum 10
3.4 Sem antics 10
3.5 Comments 11

4 Gumnut Processing 13
4.1 First Stage: Syntactic and Semantic Errors 14
4.2 Stage Two: Analysis of Names 15
4.3 Stage Three: Production of Files 16

5 Output From Gumnut 17
5.1 Language 17
5.2 Scanner . 19

5.3 M enus . 19
5.4 Using M ultiView 20

6 Scanners For Dynamic Operators 21
6.1 Generation Of Skeleton Procedures 21

6.2 Interfacing to Template Driven Editors 22
7 Proposed Extensions 23

7.1 Textual Formatting 23
7.2 Specification of File Extensions 23
7.3 Outputting Files in Other Languages 23
7.4 Automatic Creation of Scanners 24

7.5 Semantic Extensions 24

R eferen ces . 25
Appendix I Production of Files and Example 27
Appendix II Gumnut Meta Language Description 39

11.1 BN F Description 39
11.2 Syntax Charts 40

Appendix III Scanners Available 43

ERL-0512-TR

List of Figures

Figure 1 Using Gumnut to instantiate MultiView 2
Figure 2 Abstract syntax tree for a case statement in Ada 5
Figure 3 Data Flow Diagram of Gumnut translator 13
Figure 4 Example of menu used for expanding an array type definition20 0
Figure 5 Example of menu used for expanding a type definition phylum 20
Figure 6 Window containing prompt for an identifier 22
Figure 7 Window containing details of error in previously entered identifier as well

as the window containing the entered identifier 22

List of Tables

Table 1 Table summarizing procedures supplied for scanning Ada lexical items.. 43

'4 eston For

i~l iS CFRA&I

1) 7 TAR

00
Jt '-u ,fication,

SBy _ -

[iai -I. iit Codes

.- and/or
Special

a a immi e l ii l i m I II I I 0

ERL-0512-TR

1 Introduction

1.1 PurposeNI
This paper gives the specification of the Gumnut translator, a s tax driven tool used in

conjunction with the MultiView integrated programming environment-[1], In Chapter 2 we discuss
the fundamentals of Abstract Syntax on which the meta-language used by Gumnut is based. In
Chapter 3 the meta-language is specified. Chapter 4 specifies the Gumnut translation processing,
while Chapter 5 specifies the output, by the use of a small example. In Chapter 6 we report
on Scanners developed for the Ada programming language. Chapter 7 proposes extensions to
the Gumnut translator and appendices give an example, a complete Backus-Naur Form (BNF)
definition of the meta-language, and a list of input scanners implemented at the time of writing.
The remainder of this chapter will give a brief -history surrounding the need for the Gumnut
translator. /-

1.2 Gumnut

Gumnut is a translator which assists in instantiating the MultiView distributed integrated
incremental programming environment for a particular language. It was originally designed in
April 1986 by Michael McCarthy, at the University of Adelaide, but has since been extended by
the authors at Information Technology Division (ITD), ERL, DSTO, Salisbury.

MultiView is a distributed incremental integrated programming environment which has
been under development at the University of Adelaide since 1985, under the direction of
Dr. Chris Marlin. For an overview of MultiView, see [71 or [3].

MultiView was developed so that its generic components could be instantiated via a syntactic
description of the programming language to be supported. MultiView must ensure that only
syntactically correct programs are created within the environment so information is required about
the structure of each supported programming language; abstract syntax was chosen as a way of
representing the structure of a language. Gumnut was then developed to take an abstract syntax
description of a language and create the necessary data files which would then be used by the
components within MultiView. For example, one data file contains menus, for use by template-
driven editors. Figure 1 gives a pictorial view of how Gumnut is used to instantiate Mu!tView. A
description of the language is passed to the Gumnut translator, which outputs langiiage specific
data, which is then encapsulated into MultiView, to form a programming envirr ,unent for the
language described.

Gumnut was extended at ITD to allow for easier entry of the abstract syntax and also to provide
additional outputs to implement scanning, of such entities as numbers, strings and identifiers.

1.3 Scope

The specification of output from Gumnut within this repo,% is for use with the MultiView
version 1. The meta-language described will remain the same-, when Gumnut is able to be used
with MultiView version 2, which will be implemented in Ada rather than Modula-2.

ERL-0512-TR

Gurnut meta-language
description of target

language abstract
syntax

MultiView 0

Source
(Modula-2 and C)

language specific 0
translator modules and data

language independent
modules and data

Compile -0

MultiView
object code

Figure 1 Using Gumnut to instantiate MultiView

0

i ,m ,mmmmmm llmm mmm mmm I~mmmmm m mmm m mmmmn m m-mmmmiim

ERL-0512-TR

2 Abstract Syntax

2.1 Definitions

This chapter outlines how an abstract syntax [11 describes a programming language. An
abstract syntax is the syntax of the language, with the components abstracted out. Thus it contains
only syntactic categories, such as statements and declarations, as well as the structure of syntactic
structures, such as the fact that a repeat loop contains a statement sequence and an expression
controlling the termination of the loop. So all the "syntactic baggage", specifically keywords and
punctuation, is removed.

The abstract syntax of a language, as used by MCCarthy [81, can be described using the
following sets:

U, the universe of symbols
V C U, the phyla (syntactic categories)
)- C U, the fixed arity operators (syntactic structures with a fixed number of heterogeneous
components)
V C 1, the variable arity operators (syntactic structures with a variable number of homogeneous
components)

such that P, F and V are disjoint. Hence P U F U V = U4. The functions which are used to

manipulate the abstract syntax are:

7r:P ---p(UV) (the structures within each syntactic category)
o:F * P (the various components of a syntactic structure)
r:V P P (the syntactic category for components of a list)

where p(x) is the powerset of x, and P" is the set of ordered tuples of elements of P, that is,
{(x I, X2 ... ,z n) : X 1, X2, ... , ,z E P9,n > 0)

As well as these sets and functions, the following terms can also be used to further describe
parts of the abstract syntax.

A simple phylum is a phylum such that the cardinality of the set of operators which are members
of the phylum is one; that is, the phylum has only one member: n(vr(p)) = 1, where p E P and p
is a simple phylum and n(X) is the number of members in the set X.

An optional phylum is used where a syntactic category need not be expanded. For example,
the parameter transmission mode specification for variables passed to Ada procedures is optional.
As an operator is required for expansion purposes, the "Null" operator is provided. That is, the
operator "Null", which has arity zero, is used to indicate that no syntactic category was chosen.

A dynamic operator is an operator that, rather than having a syntactic structure, needs a string
of characters to represent it. That is, rather than breaking the operator down any further, a string
can be used to represent it; examples include replacing an identifier placeholder with the name
of the identifier, or replacing a number operator with the string representing some number. Thus
a(P) = 0, the empty set, where D is a dynamic operator; note also that P C F.

The starting phylum is the phylum which represents the root symbol, which is expanded to
eventually build a unit to be manipulated.

ERL-0512-TR

2.2 Example

To make these definitions clearer, a short example using the syntactic category statement from
the language Ada follows: 0

Phyla

SimpleStatementjlist, SimpleCase-list, SimpleElsestatements,
Expression, Statement, SimpleCasealternative.

Fixed Arity Operators

While-loop, Procedurecall, Entrycall, Assignment, Return, Case,

Variable Arity Operators

Statementlist, Case-list.

So applying some of the functions gives:

(Statement) = {Whileloop, Assignment, Procedurecall, Entry_call,
Return, Case, ...

ir(SimpleIdentifier) = (Identifier)
o(While-loop) = Expression SimpleStatementlist
cr(Assignment) = Simple-Identifier Expression
7r(SimpleStatement-list) = {Statement-list}
cr(Case) = Expression SimpleCi-elist SimpleElsestatements
r(Statement-list) = Statement
ir(Caselist) = SimpleCasealternative

From the definitions defined we can say that "SimpleStatementlist" is a simple phylum, along

with "Simple-Identifier". Also, rather than breaking up the operator "Identifier" any further, that
is, specifying that it is made up letters and so forth, we can nominate it to be a dynamic operator.

2.3 Abstract Syntax Trees

The abstract syntax of a language leads to the representation of a program by an abstract
syntax tree. Each node of the tree consists of a phylum and an operator. The operator is a member
of the set obtained by applying the function ir to the phylum. The branches from each node are

derived from the ordered tuples of the elements given by the function or applied to the operator
in the node, if it is a fixed arity operator. If the operator in the node is of variable arity, then any

number of branches may extend from the node. The phylum in each of the children is obtained
by applying the function 7.

The root of the abstract syntax tree will contain the starting phylum. Leaf nodes will be contain

unexpanded phyla, that is, no operator has been chosen from the set of possible operators for that
phylum; the operator in the node is a variable arity operator and no branches have been built from

the node yet; the operator is a fixed arity operator with arity zero, such as the "Null" operator;

or the operator is a dynamic operator in which case its name is replaced by the string the user
has entered.

ERL-0512-TR

Statement
Case.

Expression Simple Case list Simple Else statements
response Case list Else statements

Simple Case alternative Statement
Case alternative Null Operation

SimpleChoice list Simple Statement-sequence
Choice list Statementsequence

Cho ice Choice Statement Statement
N Assignment

Simple Identifier Expression
Exit program TRUE

Figure 2 Abstract syntax tree for a case statement in Ada.

In Figure 2, an abstract syntax tree is shown for the fragment of Ada program code:
case response is

when 'N' I 'n' => ExitProgram := TRUE;

-- No Statement supplied
when others => null;

end case;

From Figure 2, we see that each node consists of a phylum name (in italics) and an operator
name (in bold face), The operator Case is of fixed arity and it consists of the children in the order
defined in the previous example in Section 2.2. The leaves of the tree are either:

Unexpanded nodes (such as the node containing only Statement), or
dynamic operators (such as Exitprogram - the user has entered the string "Exit-program",
which has replaced the dynamic operator Identifier), or
fixed arity operators with an arity of zero (such as NullOperation),or
a leaf which is a variable arity operator with no children (such as Statementsequence).

ERL-0512-TR

This leads to the method of program creation by expanding the tree from the starting phylum to
the desired abstract syntax tree.

i m m ~am mmm m ~ mlml |

ERL-0512-TR

3 The Gumnut Meta-Language

The abstract syntax describes a source language mathematically, but it is not suitable for a
machine readable description of a programming language. The Gumnut meta-language is an
equivalent representation of the abstract syntax. It is described in this section using Extended
Backus-Naur Form (EBNF). A concise list of the EBNF given can found in Appendix 1.1, whilst
Appendix 11.2 details the syntax using syntax charts.

3.1 Overall Structure

The overall goal of using this meta-language is to represent a language's abstract syntax
definition for use by Gumnut. The main shell of the description is given by

language ::= language languagename is
chapter {chapter} starting-point

end language language-name.

where languagename is the name of the programming language which the abstract syntax is
describing. To improve readability within the Meta-language, sections of abstract syntax can be
grouped together within a chapter, the syntax for which is

chapter ::= chapter chapter-name is
abstract syntax for chapter-name is

{definition)
end abstract syntax;

end chapter chapter-name;

The chaptername is used to indicate the subject area of the chapter; for example, one may
divide an abstract syntax description of Ada into chapters, such as chapters for exception handling,
statements and expressions.

3.2 Definitions

The elements of the universe are defined in the chapters, that is, the declarations of phyla and
operators. Declarations of phyla and operators may be in any order, so forward references are
permitted, but objects should be declared before being referenced, or soon after, to assist human
readability. Definitions can be grouped into four separate groups: phylum, optional phylum,
operators and dynamic operators.

definition ::= operatordefinition I phylumdefinition
operator definition ::= plain-operator I dynamic-definition
phylum-definition ::= optionaldefinition I ordinary-definition

3.2.1 Phyla

Phylum declarations can be divided into two sections: phylum and optionally null phylum.
The only visible difference between the two is the keyword optional. The addition of this keyword
results in the Null operator being included amongst the sets of each phylum declared with the
list of declarations. Other than this, the two types of declarations are identical and so shall be
discussed together.

ordinary-definition ::= phylum {phylum-list)
phylum-list ::= phylumname : (phylum-struct) ;

ERL-0512-TR

phylumstruct ::= operatornarm cubsetitem 0
subset-item ::= @ phylumname
optionaldefinition ::= optional phylum (phylum-list)

When declaring a phylum, all its members (which are operators) must be specified. To increase
readability and simplification, the programmer may place a phylum amongst the operators that
are to be included in the phylum's powerset, but only if the phylum is prefixed with an at sign
("@"). This then means that the operators within the powerset of the phylum used are included
into the powerset of the phylum being declared. Hence, a phylum may be partitioned into subsets
which have different phylum names and are included within the phylum's powerset by using the
at sign prefix ("@"). (Using a sub-phylm also leads to some changes in the menus initialization
that Gumnut produces, but this will be discussed below.) •

Name: Attribute Characters Indexed comn Slice

Operatorsym Selectedcomp Identifier;
Prefix: FunctionCall qName;

In the above declarations, any of the seven defined operators may be used when a name is required.
When a prefix ii required, either a function call or any of the seven operators defined for name are
acceptable for expanding a prefix. Note also that "Name" will be used in operator declarations.

Logical_op: And Or XOr And Then OrElse;
Relationalop: Equal NotEqual Lesser Greater

LesserOrEqual GreaterOrEqual
Inrange NotIn range;

Binaryaddingop: Add Subtract Concat;

Unarvyaddingop: UnaryMinus UnaryPlus;

Multiplying_op: Multiply Divide Modulo Remainder;
Yigest-precop: Abs Not Exponent;

Primary_op: Number NullOperation Aggregate String

@Name @Allocator FunctionCall
Type_convert Qual_expression;

Expression: @Logical_op @Relationalop @Primary

@Unaryaddingop @Binaryaddingop

@Multiplying_op ',Highestprecop;

In this example, the phylum Expression has been partitioned into seven sets, which are included
in the declaration of Expression. Note, that these seven additional phyla are not used in the
declaration of any operators; they are used only to add to the readability of the declaration of
expression.

3.2.2 Operators

Operators, by definition, can be either variable or fixed arity. They may also be divided into
dynamic operators (the programmer must enter a string to complete the tree), or non dynamic
(these are definitions that enable the further expansion of the tree). These two groups of operators
are defined separately and distinctly. Variable arity operators and fixed arity operator that are not
dynamic, are both declared in a similar fashion, using the structure declared below.

plain-operator ::= operator (operatordeclaration)
operatordeclaration ::= operatorname : {fixed struct I variable_struct)

ERL-0512-TR

• When declaring a fixed arity operator we need to give the details of its ordered tuple. This is
achieved by listing, in order, the phyla that are in its tuple. This is done by using the fixedstruct,
which is composed of the struct item, and will be discussed shortly.

fixed struct ::= {struct-item)

* To define a variable arity operator, exactly one phylum is required by definition. The phylum
is given via the struct-item, which is the same as that used by the variable arity operator. The
number of items of this phylum is given by list-type as either one or more elements ("+"), or zero
or more elements ("'). By a'Lwing both types of lists, the programmer is saved from having to
specify a long winded structure. This is really an extension of the rules of abstract syntax.

• variable struct ::= structitem listtype
list-type ::= + *

Note that if the list type is not included, then the operator will be assumed to be a fixed arity
operator with arity equal to one, because its syntax matches fixed struct above.

To describe the phyla '.hat appear on the right hand side of the declarations of operators,
the structitem is used. To reference a phylum directly, the name of the phylum is given. An
operator may be given when prefixed by a hash ("#'; this can be used when the phylum, that
would otherwise have been used, has only the operator in its powerset. This then saves the user
from having to declare the phylum, as it is done implicitly. Alternatively, an operator can also be
prefixed by a percent sign ("%"); this has the same effect as having used the hash except that the
operator is optional. That is, an optionally null phylum is implicitly declared.

struct item ::= phylumname I simple-phylum I optionallynull-phylum
simplephylum ::= # operatorname
optionally-null-phylum ::= % operatorname

0 Some examples of the declaration of operators is given below. The first of these is:

Assignment: Name Expression;

which declares the assignment statement to be an operator, which is constructed of a variable
0 name and an expression (that is, the expression is assigned to the variable). Both the expression

and variable name are phyla. A constant declaration may be defined by:

Constant : #Identifierlist Expression;

• The operatc: "Con, ant" is composed of two fields, an identifier list and an expression. "Identi-
fierlist" is an operator; so it is replaced by the phylum "SimpleIdentifierlist", which has only
the operator "Identifierlist" in its powerset. That is, the declaration is equivalent to

Constant : SimpleIdentifier list Expression;

where "SimpleIdentifierlist" would be declared elsewhere as a phylum, by:

Simple Identifierlist : Identifierlist;

* A loop statement could be declared to have three sections, hence:

Loop: %Identifier Iteration Scheme @StatementSequence;

ERL-0512-TR

The first part is a loop identifier which is optional, hence (since it is an optional operator), "%"

can be used to simplify the declaration.

Statement-sequence: Statement*;

A statement sequence is declared to be a list of zero or more statements.

Literal-list: Enumeration-literal+;

Here a literal list (enumeration list) is declared to have at least one enumeration literal.
A dynamic operator has an arity of zero and hence requires no declaration involving phyla.

However the dynamic operator during the construction of the abstract syntax tree requires a string
representing that dynamic operator. For example, if the dynamic operator is an identifier, the
node requires a string of characters that represents an identifier. This string replaces the identifier
operator. To check a string entered as a dynamic operator, a procedure must be supplied that can
be called to scan the string entered for any errors. To do this the name of the procedure is declared
along with the operator. (The parameters and return value are the same for all procedures, thus
allowing a common interface from the tools to those procedures.)

dynamicdefinition ::= dynamic operator {dynamic-operatorl
dynamic-operator ::= operatorname is procedurename;

An example of its use is

dynamic operator
Identifier is ScanIdentifier;

Hence when "Identifier" is used, the procedure "Scanidentifier" will be called to scan the text that •
is entered by the programmer, after they have been prompted for an identifier.

3.3 Starting Phylum

All that remains to be discussed now is the starting phylum. This is done as the last thing in
declaring the abstract syntax for a language. It is done by the following statement:

starting-point ::= starting phylum structitem ;

"structitem" is defined in Subsection 3.2.2.

3.4 Semantics

When a name is encountered for the first time, its location determines its type.

Language : declared in the language heading.
Chapter : declared in the chapter heading.
Phylum declared on the left hand side of both an optional phylum and an ordinary phylum 9
definition; within the definition of the starting phylum; on the right hand side of either of
the phylum definitions (if preceded by an at sign ("@")); and on the right hand side of an
operator definition.
Operator : declared on the left hand side of an operator definition, (which can be variable,
fixed or dynamic); on the right hand side of a phylum definition; and on the right hand side of
an operator definition (fixed or variable only); and within the definition of the starting phylum,
if prefixed by a hash ("#") or a percent ("%").

ERL-0512-TR

The only semantic rule, is that once a name has been declared it must be used consistently. That is,
if a name is declared as an operator, it can not later be used as a chapter name. Note, that although
procedure name is mentioned during the definition of a dynamic operator, the name given has
no semantic meaning, and is only stored with the dynamic operator, to indicate the name of the
procedure which will scan input representing the dynamic operator.

3.5 Comments

As in many languages, comments can be added to the abstract syntax description to improve
the readability of the description. To add a comment simply enter a hyphen ("-") and any text to
the end of the line will be treated as a comment (which is similar to how Ada handles comments).

0

ERL-0512-TR

0

0

0

0

THIS PAGE iNTENTIONALLY LEFT BLANK

0

0

0

0

0

ERL-0512-TR

4 Gumnut Processing

The Gumnut translator has three distinct stages when it is invoked to translate the description
of a language to the modules necessary for generating an instance of MultiView for the described
language. If a stage is not completed correctly, that is, an error is found with the language
description, then translation stops, and the next stages are not attempted. A data flow diagram,
separating out the three stages, is shown in Figure 3 (this is in fact an expansion of the "Run
Gumnut translator" bubble, from Figure 1).

Meta-language

description
of language

Details of implicit

Check for syntactic phyla and language

and semantic errors statistics

and establish meaning
Definitions for

phyla and operators

SEstablish implicitly
Syntactic and declared phyla and
Semantic errors report undefined

phyla and operators.

Definiitions for Undefined phyla
phyla and operators and operators

F De tend it een m dDtes . D

Language specific
modules

Figure 3 Data Flow Diagram of Gumnut translator.

ERL-0512-TR

4.1 First Stage: Syntactic and Semantic Errors

The first stage of translation is to scan the file for syntactic and semantic errors according to
the syntax and semantic rules defined in Chapter 3. Error messages are straightforward. Syntactic
errors report what is missing and on what line. In the following example, a colon is missing from
the line.

phylum

Statement @CompoundStatement @Simple_Statement;

This produces the following output from Gumnut (assuming the above description occurs on line
14 and 15 of the input file).

Error () Line 15: Colon expected!

Note, that the Gumnut compiler does not employ outstanding error recovery, so errors may
propagate. For example, in the following code fragment, the declaration of "Statement" is not
made within a context of a declaration, such as a phylum.

language Incorrect is

chapter Only is
abstract syntax for Only is 0

- keyword "phylum" has been omitted here.

Statement: Call;
dynawic operator

Ident = Scan;

operator 0
Call : @Ident;

end abstract syntax;
end chapter Only;

starting phylum Statement
end language Incorrect.

This produces the following errors (from the current version of Gumnut):

Error () Line 7: Keyword 'end' expected.

Error () Line 8: Keyword 'abstract' expected.
Error () Line 8: Keyword 'syntax' expected.

Error () Line 8: Keyword 'end' expected.
Error () Line 9: Keyword 'chapter' expected.
Error (Only) Line 9: Chapter name expected.
Error 0 Line 9: Semi-colon expected.
Error () Line 11: Keyword 'chapter' expected.
Error () Line 11: Keyword 'is' expected.
Error () Line 13: Keyword 'chapter' expected.
Error () Line 14: Expecting an identifier.
Error () Line 14: Keyword 'starting' expected.
Error () Line 14: Keyword 'phylum' expected.
Error () Line 14: Expecting an identifier.

ERL-0512-TR

Error () Line 14: Keyword 'language' expected.

Error (Example) Line 14: Language name expected.

Error () Line 15: Dot expected.

Semantic errors report the name that is being used and how it is conflicting with what it is
thought to be; again the line number is included. For example,

Error (Slice) Line 25: Only phyla may appear on right
hand side of operator declaration.

indicates that "Slice" had previously been declared to be an operator, but is now being used as a
phylum within the declaration of an operator on line 25 of the input file.

Also during this process of detecting syntactic and semantic errors, a name, when initially
declared, must be stored along with what it represents. When the names are finally defined (or
they may be defined immediately), their definitions must be stored with them (for operators and
phyla only). For example, when a variable arity operator is defined, the phylum that it may expand
to must be stored with the operator along with the list type.

Having successfully completed this stage, a table will have been built up, containing all the
information about the operators and phyla defined, as well as those defined implicitly (that is,
simple and optionally null phyla).

4.2 Stage Two: Analysis of Names

This stage lists all phyla that have been declared implicitly, either as simple phyla or optional
phyla (under the heading "Implicit phyla"). The operators and phyla used but not defined are
also reported during this stage of the compilation (under the headings "Unelaborated phyla" and
"Unelaborated operators"), or if there are no unelaborated operators or phyla, a message will
appear ("No unelaborated phyla." and/or "No unelaborated operators.").

The information that follows supplies some statistics about the declaration of phyla and
operators. Under the heading of "Phyla", we see the number of phyla that have been declared
explicitly and implicitly, and also the maximum number of operators in any phylum's set. This is
followed by two numbers. The first number represents how many operators are in a set, whilst
the second number represents how many phyla have that many operators in their set. Under the
heading of "Operators", we see the total number of operators, with this figure broken down into
the number of fixed and variable arity operators. The highest arity found amongst all operators
follows. Again a list of two numbers is printed. The first number represents the arity and the
second number represents the number of operators having that arity. The following is the output
for the example in Appendix I.
Phyla: 11 Max members: 8

1 5

2 3

4 1

7 1

8 1
Operators: 15 Fixed: 13 Variable: 2 Max arity: 2

0 4

1 3

2 6

0

ERL-0512-TR

4.3 Stage Three: Production of Files 0
This stage creates the files: Language.def, Language.mod, Parsers.def, Parsers.mod, and

phylum-menus.c. These files are then compiled and linked to the remainder of the MultiView
sources, which are static, and an instance of MultiView is created for the programming language
described by the meta-language description. The generation of these files will be discussed in the
following chapter.

ERL-0512-TR

5 Output From Gumnut

Gumnut produces four Modula-2 source files Language.def, Language.mod, Scanners.def,
Scanners.mod and a C source file phylum-menus.c. The following sections will describe each of
the modules. An example can be found in Appendix I.

5.1 Language

Modula-2 source packages comprise a definition and an implementation module, with the
UNIX® file extentsions ".def" and ".mod" respectively. Language.def contains a type declaration
of the Universe as a range, as well as subsequent type declarations of phyla and the various types
of operators, all of which are sub-ranges of the Universe. To generate these ranges the following
constants need to be determined.

MinFixedArity The start of the fixed arity range, as well as the start of the Universe range.
This will always be one.
MaxFixedArity The end of the fixed arity range. This is equal to the number of fixed arity
operators including dynamic operators and the operator "NULL".
MinVariableArity The start of the variable arity range. This is MaxFixedArity plus one.
MaxVariableArity The end of the variable arity range. Equivalent to the number of variable
arity operators plus MaxFixedArity. Hence, if there are no variable arity operators used in the
abstract syntax description then this number will be one less than MinVariableArity.
MinPhylum This is the commencement of the range, used to denote phyla. It is MaxVari-
ableArity plus one.
MaxPhylum This represents the conclusion of the phyla range. It is MaxVariableArity plus
the number of phyla in the abstract syntax definition (both explicitly and implicitly declared).
As well as being the end of the phyla range, this is also the end of the Universe range.

Thus the range MinFixedArity to MaxPhylum enumerates the Universe which is partitioned
into fixed arity operators, variable arity operators and phyla.

In addition to constants being required for the declaration for the Universe, the following
constants are required for structure declarations, used to store the abstract syntax definition of
the language.

MaxArity This number is the maximum arity of all the fixed arity operators. It is used to
determine the bounds on an array, which is used to store the phyla of a fixed arity operator.
NoOfOperators This number represents the total number of fixed and variable arity operators
and in fact, is equivalent to MaxVariableArity. It determines how large a set must be to allow
each phylum to have a set of operators, which represents the phylum's powerset of operators.
(Due to the limitations of some Modula-2 compilers, the set of operators is broken up into a
number of eight member sets.)
NameLength This is the longest identifier used in describing any phyla or operator. Note that
this includes the names of implicit phyla that have been generated by Gumnut. The constant
is then used to determine the bounds on the character array used for storing each name of
the elements of the Universe.

UNIX is a registered trademark of AT & T.

ERL-0512-TR

Finally, the starting phylum needs to be defined, so that one can determine the root node of 0
the abstract syntax tree. This is done be declaring the following constant:

StartingPhyla This is the number that has been attributed to the phylum which the starting
phylum construct (within the meta-language description of the language) has nominated to be
the starting phylum of the language.

Language.mod requires all the initializations necessary to declare the operator sets of each
phylum and to define how many fields each operator has, and what those fields are. (The
declarations of these structures are found in Language.def.) Also needed are the names of the
functions that the dynamic operators need to call when text is to be scanned.

Contained in this file are procedures that dynamic operators use to scan text. These procedures 0
are imported from Scanners. The initialization of the array PhylumTable array is accomplished by:

For each phylum

Name This field contains only the name that was used to declare the phylum.
Members Due to the limitations on set sizes, this set is implemented as an array of eight
element sets. The length of the array is from zero to the number of operators div eight
(as seen in its declaration within Language.def). When initialized, this array contains the
numbers of operators within the phylum's powerset. An operator is added to the array
thus:

The set it goes into is given by the number of the operator div eight, and then the set
element it represents is the number of the operator modulo eight.

For example, an operator which is represented by the number 28, will go into the fourth
element (since 27 modulo 8 is 4) of the third set (since 28 div 8 is 3).
Member This is the number used to represent one of the operators in the phylum's set
of members.
Simple This is true if the phylum is simple, that is, it has only one operator in its set of
members.

The initialization of the array FixedArityOperatorTable proceeds as follows:

For each fixed arity operator including the operator NULL which has the value of zero

Name This field just contains the name that was used to declare the phyla.
Arity The number of phyla making up tl.e ordered set of tuples of the operator.
Dynamic This is true if the operator is a dynamic operator, otherwise it is false.
ProcToCall This field can only be elaborated if Dynamic is true, in which case the field
contains the procedure to call to scan text that has been entered to represent the dynamic
operator.

Finally, the VariableArityOperator array is initialized. It proceeds as follows:

For each variable arity operator

Name This field contains only the name that was used to declare the phyla.
AtLeastOne This is true if the operator must have at least one branch containing the
phylum given by Operand.
Operand This contains the number of the phylum which the operator can expand to, any
number of times.

ERL-0512-TR

5.2 Scanner

Both files comprising Scanners, that is, Scanners.def and Scanners.mod, require the names of
the procedures that will be called for scanning text representing dynamic operators. Once these
names are known, both the files can be generated.

Note that the bodies of the scanning functions need to be completed by the programmer (in
Scanners.mod), the error types need to be defined (in Scanners.def), and the error messages for
each error type need to be written within the procedure SyntacticErrorMessage (in Scanners.mod).
The completion of the bodies will be discussed in Chapter 6.

5.3 Menus

Template driven editors within the MultiView environment need to be able to display menus
such as those shown in Figure 4. Gumnut produces a set of tables used to create such menus, in
the file phylummenus.c. To construct this file Gumnut must generate the size of the array used to
store the menus used by the textual editor for expanding phyla, and also the text that will generate
the menus which are stored in the phylum menu array (in elements according to the number used
to represent each phylum). The remainder of the file is static. To define the bounds of the array,
the constants min-phylum, max-phylum and no of.phylum, which correspond to the constants
declared in Language.def (with the exception that no-ofphylum is evaluated). To generate the
elements of this array, phmenu, the following algorithm is used.

For each phylum, the corresponding array element is created using "menucreate" with the
fields set as follows:

MENUTITLEITEM This is the name used to represent the phylum. It is the same name
as that stored for the phylum in the PhylumTable array.

Then, for each item on the right hand side of the phylum's declaration, a MENUITEM is
created thus:

MENUSTRING The name used to represent the operator.

If the .cem was an operator then MENUVALUE is set thus:

MENUVALUE The number used to refer to the operator.

Otherwise, the item must have been a phylum, and so a puliright menu is created thus:

MENUPULLRIGHT The phylum's number is used to reference this array and point to
the menu declared for the phylum.

As seen in the above algorithm, the menus will indicate whether the declaration of the language
has partitioned phyla into sub-phyla. A pullright item in the menu has an arrow next to it. Selecting
the item and moving right (whilst holding the mouse button down) will result in another menu
being displayed, as in Figure 5.

For example, consider the following phyla declarations:

Arraytype_defn: Constrainedarray Unconstrained-array;
Typedefinition: Access @Arraytypedefn Derived type

Enumeration Integer_type Realfixedtype
Realfloatingpt Record;

The menu for the array type definition phylum will contain just the two entries: constrained and
unconstrained array, both of which are operators, as seen in Figure 4. In the case of the type

ERL-0512-TR

definition in Figure 5, the item "Array-type-defn" is seen to be a pullright menu, with the same
menu as in Figure 4. 0

S Constrained-array

Unconstrained-array

Figure 4 Example of menu used for expanding an array type definition.

Access
Deri ed-type

Enumerati on •

Integer-type
Rea]_f i xed-type

Real-f]oati ng-pt

Record 0

Unconstraie-ra

Figure 5 Example of menu used for expanding a type definition phylum. 0

5.4 Using MultiView

With these modules the MultiView programming environment for the defined language can
then be built. Details of this process will given be in later technical reports.

" ---- m mmm ml mm nmmlamm l0

ERL-0512-TR

6 Scanners For Dynamic Operators

This chapter describes how the scanners of dynamic operators are developed, how the strings
representing dynamic operators are obtained (in general) and the method used to report errors
back to the MultiView user. The scanners that have been developed for Ada are described in
Appendix III.

6.1 Generation Of Skeleton Procedures

6.1.1 Procedure Stub

As mentioned in Section 3.2.2 a dynamic operator is declared by:

dynamic-operator ::= operator-name is procedure-name ;

The procedurename is then taken to be the name of the procedure for parsing the dynamic
operator. Gumnut outputs a module in the Modula-2 language containing stubs for the procedures
named in the abstract syntax description. The stubs that are produced in Scanners.mod are of the
form:

PROCEDURE procedure name (VAR Text : ARRAY OF CHAR)

SyntacticError;

BEGIN

END procedure-name;

which must then be completed by the programmer. The variable "Text" contains the string (an
array of characters) which has been entered by the user in response to being asked to enter
the dynamic operator. The result is any of the enumerations of "SyntacticError", described in
Section 6.1.2 below. If the string entered to represent a dynamic operator is correct then "Success"
is returned as the result of the procedure. Otherwise, another enumeration item is returned to
indicate the type of error. In developing the scanners for the Ada language, as soon as an error
was detected, the error condition was returned as a result of the function; that is, only the first
error in the string is detected.

6.1.2 Syntactic Errors

The enumeration items that represent errors found by the scanners are all defined by the
programmer, in the file Scanners.def. They are declared by adding the enumeration items into the
declaration for "SyntacticError", which exists already and contains "Success", as shown here:

TYPE

SyntacticError = (Success);
(*Add enumerations for errors in above declaration.*);

As well as using and declaring the enumeration items that represent errors returned by the
dynamic operator scanners, the procedure "SyntacticErrorMessage" must also be extended (it is in
the same file as the procedure stubs) to return a string which will then relay the error to the user.
For example, an error returned may be "NotDigit" meaning that a digit was expected in the string
but not found. Then within the procedure, the following line would be added after the line for
returning the message for "Success":

ERL-0512-TR

I NotDigit: Assign("A digit was expected!",
Message, bool);

The var--ble "Message" returns the string to a routine that will then display the message, and
"bool" is included to determine if the Assign was successful or not, but will normally be "true"
unless the message is more than one hundred characters.

6.2 Iiterfacing to Template Driven Editors

When a dynamic operator is required a window will appear, such as the one in Figure 6
(assuming the dynamic operator is an identifier). The user of the editor would then enter a string.
This string would then be passed to the appropriate scanner routine for scanning. If the string
was an acceptable representation of an identifier, then the string would appear in the appropriate
location of the identifier in the displayed program segment. If an error was found, an additional
window, such as the one in Figure 7, would also appear. We can see that it contains the aFpropriate
error message (obtained by calling SyntacticErrorMessage), as well as a button for the user to try
to enter the identifier again, or to abort the entering of the identifier.

Please enter an identifier: CounterA

Figure 6 Window cor,,aining prompt for an identifier.

Please enter an identifier: Item__CounterI

Invalid character followingAbr

Figure 7 Window containing details of error in previously entered
identifier as well as the window containing the entered identifier.

.. . . m u ~ imi u m~ mmimI.W I I 0

ERL-0512-TR

* 7 Proposed Extensions

There are still many extensions that can be made to Gumnut to produce more information
needed by MultiView to remove all language dependencies from modules not generated by

* Gumnut.

7.1 Textual Formatting

The textual view, Koala [6], still requires rules to be entered manually to inform the view on
* how to convert an abstract syntax tree into textual form and also how to indent the text. The

current formatting rules used by Koala are those used by the Gandalf system [9].

The formatting rules could be incorporated into the abstract syntax, within the declaration of
operators. (Remembering that operators represent a syntactic structure while phyla only represent
a syntactic category.) This would mean only changing the meta-language productions:

* operatordeclaration ::= operatorname: {fixed-struct I variablestruct)

to the new production:

operatordeclaration ::= operatorname: [format-rule]
(fixedstruct [format-rule] I variable struct [format-rule])

* where "formatrule" is a set of rules for formatting text and adding keywords; and the meta-
language rule for dynamic operators, currently:

dynamic operator ::= operatorname = procedure-name;

to the production:

dynamic-operator ::= operatorname = [format-rule] procedurename
formatting-name[format-ruleI ;

where the procedure given by "formatting-name" is used to change the string if necessary.
For example, the formatter for strings in Ada will need to add an extra pair of quotes (") when

* quotes are used within the string.

7.2 Specification of File Extensions

We are developing the capability to specify the file name extension of files that can be read
• in as textual forms of a program, and also some means of specifying the compilers that c. be

used. Both of these are needed to remove a few small language dependencies currently existing
in modules that are meant to be language independent. We expect that to add these capabilities
to Gumnut, it will just require an extension to the meta-language following the declaration of the
starting phylum.

• These extensions will not result in any change in the specification of the meta-language used
to describe a language (that is, within the chapters), but they will just be additional constructs
added after the starting point. These constructs will add to the knowledge needed by various
modules of MultiView and its views.

* 7.3 Outputting Files in Other Languages

An extension, which will shortly be incorporated, is the ability to specify the language in which
the Language and Scanner modules are output. This choice will be a run-time argument to the

ERL-0512-TR

Gumnut command. Ada will be the next language choice available. Thus the command

Gumnut Ada file-name

will give Ada code; or

Gumnut Modula-2 file-name

will give Modula-2 code, as specified in this document.

7.4 Automatic Creation of Scanners

At present the user has to develop the scanners for the dynamic operators. In the future, the
scanners could be generated directly from BNF productions. The technique would be similar to
that used by compiler-compilers [1]. The specifications for the scanners might appear with the
declaration of the dynamic operators and would replace the naming of the scanning routine.

7.5 Semantic Extensions

There will be more extensions required when MultiView is capable of incremental semantic
analysis and code generation. These extensions will allow for the semantic definitions of a language
and code generation to be specified, but the requirements are not yet clear.

ERL-0512-TR

References

[11 A.V. Aho, R. Sethi, and J.D. Ullman. Compilers; Principles, Techniques and Tools. Addison Wesley
Publishing Company, Reading, Massachusetts, 1986.

[21 R.A. Altmann. An Abstract Syntax Tree Editor for The MultiView Programming Environment.
Honours thesis, Department of Computer Science, The University of Adelaide, Adelaide, South
Australia, October 1986.

[31 R.A. Altmann, A.N. Hawke, and C.D. Marlin. An Integrated Programming Environment Based
on Multiple Concurrent Views. The Australian Computer Journal, 20(2):65-72, May 1988.

[4] G. Booch. Software Engineering With Ada. The Benjamin/Cummings Publishing Company Inc.,
Menlo Park, 1983.

[5] Department of Defense, United States of America. ANSI/MIL-STD-1815A-1983, Ada Program-
ming Language, February 1983.

[6] C. Lee. A Textual Editor for The MultiView Programming Environment. Honours thesis,
Department of Computer Science, The University of Adelaide, Adelaide, South Australia,
November 1987.

[7] C.D. Marlin. Multiview: An Integrated Incremental Programming Environment with Multiple
Concurrent Views. In Proc. Seminar on Parallel Computing Architectures, pages 171-180, Clayton,
Victoria, February 1986. Telecom Research Laboratories.

[8] M.J. McCarthy. Towards an Integrated Incremental Programming Environment Based on
Multiple Concurrent Processes. Honours thesis, Department of Computer Science, The
University of Adelaide, Adelaide, South Australia, October 1985.

[9] B.J. Staudt, C.W. Krueger, A.N. Habermann, and V. Ambriola. The Gandalf System Reference
Manuals. Technical report, Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, May 1986.

I

ERL-0512-TR

THIS PAGE INTENTIONALLY LEFT BLANK

9

ERL-0512-TR

Appendix I Production of Files and Example

The following BNF is for a simple language, called "Example":

Compilation ::= program [Identifier] [Priority] is Statements end
Statements ::= Statement G, Statement)
Statement ::= Assignment j WriteLn
Assignment ::= Identifier Expression
WriteLn put ([Identifier (, Identifier)])
Priority Expression;
Expression ::= cosine Number

sine Number
Number plus Number
Number minus Number
Number multiply Number
Number divide Number
Number

Identifier ::= letter {letter}
Number ::= [+ I - I digit (digit) [. digit (digit) I

These syntax rules can be translated into the abstract syntax form below, using the Gumnut
meta-language.

language Example is

chapter Only is
abstract syntax for Only is

dynamic operator
Number is ScanNumber;

operator

Plus #Number #Number;
Minus #Number #Number;

Multiply #Number #Number;

Divide #Number #Number;

Cosine #Number;

Sine #Number;

phylum

BinaryOperations Plus Minus Multiply Divide;

TrigFunctions Cosine Sine;

Expression Number @BinaryOperations
@TrigFunctions;

optional phylum
Priority : @Expression;

ERL-0512-TR

operator

IdentifierList #Identifier*;
WriteLn #Identifierlist;
Assignment #Identifier Expression;

phylum

Statement : Assignment WriteLn; 0

dynamic operator
Identifier is ScanIdentifier;

operator

StatementList Statement+;
Compilation %Identifier #StatementList;

end abstract syntax;

end chapter Only;

starting phylum #Compilation

end language Example.

To invoke Gumnut, the above meta-language description would appear in a file which has the
extension ".ast" (although the extension is not really necessary). Gumnut is then invoked with the
command

gumnut file.ast

where "file.ast" is the name of the file containing the Gumnut meta-language definition of the
language for which an instance of MultiView is to be generated. Gumnut then commences
translating the file. When this abstract syntax is translated by the Gumnut compiler the resultant
files are produced, as specified in Chapter 5:

LangKuage.def

(* Language definition module *)

(* This module is used by the Abstract Syntax module *)
(* to contain language information. It should NEVER *)
(* be directly accessed by applications. *)

DEFINITION MODULE Language;

FROM SYSTEM IMPORT ADDRESS;

FROM Scanners IMPORT SyntacticError;

ERL-0512-TR

EXPORT QUALIFIED

LanUniverse, LanOperators,

LanFixedArity~perators, LanVariableArity~perators,

LanPhyla, MinFixedArity, MaxFixedArity,

MinVariableArity, MaxVariableArity,

MinPhylum, MaxPhylum, StartingPhyla,

LanOb jectNames,

FixedArityOperatorData, VariableArityOperatorData,

FixedArityOperatorTable, VariableArityOperatorTable,

PhylumData, PhylumTable;

(Automatically generated constants go here *

CONST

MinFixedArity = 1;

MaxFixedArity = 13;

MinVariableArity = 14;

MaxVariableArity = 15;

MinPhylum = 16;

MaxPhylum = 26; MaxArity =2;

NoOfOperators = 15;

StartingPhyla = 26;

NameLength = 20;

(Universe types *

TYPE

LanUniverse = (MinFixedArity. .MaxPhylum];

LanOperators = tMinFixedArity. .MaxVariabieArity];

LanFixedArityOperators
= [MinFixedArity..MaxFixedArity];

LanVariableArityOperators

= [MinVariableArity. .MaxVariableArity];

LanPhyla = [MmnPhylum. .MaxPhylum];

(Language data types *

TYPE

zerotomaxarity = [0. .MaxArity];

lenname = [0. .NameLength);

LanObjectNames = ARRAY [0. .NameLength] OF CHAR;

OperandArray = ARRAY zerotomaxarity OF LanPhyla;

SingleParameterFunct ion

=PROCEDURE(VAR ARRAY OF CHAR)

SyntacticError;

FixedArityOperatorData

RE CORD

Name: LanObjectNames;

Arity: zerotomaxarity;

ERL-0512-TR

Operand: OperandArray;

CASE Dynamic: BOOLEAN OF

TRUE : ProcToCall : SingleParameterFunction;

END (*CASE*)

END;

VariableArityOperatorData =

RECORD

Name: LanObjectNames;

Operand: LanPhyla;

AtLeastOne: BOOLEAN

END;

PhylumData -

RECORD

Name: LanObjectNames;

Simple: BOOLEAN;

Member: LanOperators;

Members: ARRAY [0..NoOfOperators DIV 8] OF BITSET

END;

VAR
FixedArityOperatorTable:

ARRAY LanFixedArityOperators

OF FixedArityOperatorData;

VariableArityOperatorTable:

ARRAY LanVariableArityOperators
OF VariableArityOperatorData;

PhylumTable:

ARRAY LanPhyla

OF PhylumData;

END Language.

Language.mod

(* Eucalypt Language Specific Module *)

IMPLEMENTATION MODULE Language;

FROM Scanners IMPORT

ScanNumber,
ScanIdentifier;

BEGIN

(* Generated initialization code goes here *)

WITH PhylumTable [16] DO

Name := "SimpleNumber";

ERL-0512-TR

Member := 2; (* Number *)
Members [0] {2};

Members [1] :{;
Simple := TRUE;

END;
WITH PhylumTable [17] DO

Name := "BinaryOperations";

Member := 3; (* Plus *)

Members [0] {3,4,5,6};
Members [1] H{;

Simple := FALSE;
END;

WITH PhylumTable [18] DO

Name := "TrigFunctions";

Member := 7; (* Cosine *)

Members [0] {7};

Members [1] {0};
Simple := FALSE;

END;
WITH PhylumTable [19] DO

Name := "Expression";

Member := 2; (* Number *)

Members [0] {2,3,4,5,6,7};

Members [1] {0};

Simple := FALSE;

END;
WITH PhylumTable [20] DO

Name := "Priority";

Member := 1; (* NULL *)

Members [0] {1,2,3,4,5,6,7};

Members [1] {0};

Simple := FALSE;

END;

WITH PhylumTable [21] DO

Name := "SimpleIdentifier";
Member := 9; (* Identifier *)

Members [0]
Members [1] {};

Simple := TRUE;

END;

ITH PhylumTable [22] DO

Name := "SimpleIdentifierlist";
Member := 11; (* Identifierlist *)

Members [0] : 1;

Members [1] {3};

Simple := TRUE;

END;
WITH PhylumTable [23] DO

Name := "Statement";

Member := 12; (* Assignment *)

ERL-0512-TR

Members [0] {};

Members (1] {2,4};

Simple := FALSE;

END;
WITH PhylumTable [24] DO

Name := "OptionalIdentifier"; S
Member := 9; (* Identifier *)

Members [0] {1};

Members [1] {l;

Simple := FALSE;

END;

WITH PhylumTable [25] DO

Name := "SimpleStatementList";

Member := 15; (* StatementList *)

Members [0] H;
Members [1] {7};

Simple := TRUE;

END;
WITH PhylumTable [26] DO

Name := "SimpleCompilation";
Member := 13; (* Compilation *)

Members [0] :{;
Members [1] {5};

Simple := TRUE;

END;

WITH FixedArityOperatorTable [1] DO

Name "NULL";

Arity 0;

Dynamic := FALSE;

END;
WITH FixedArityOperatorTable [2] DO

Name "Number"; S
Arity 0;
Dynamic := TRUE;

ProcToCall := ScanNumber;

END;

WITH FixedArityOperatorTable [3] DO •

Name "Plus";

Arity 2;
Dynamic := FALSE;
Operand [1] 16; (* SimpleNumber *)

Operand [2] 16; (* SimpleNumber *)

END;
WITH FixedArityOperatorTable [4] DO

Name "Minus";

Arity 2;

Dynamic := FALSE;

Operand (1] 16; (* SimpleNumber *)

Operand [2] 16; (* SimpleNumber *)

END;

ERL-0512-TR

WITH FixedArityOperatorTable [5] DO

Name "Multiply";

Arity 2;

Dynamic := FALSE;

Operand [] 16; (* SimpleNumber *)

Operand [2] 16; (* SimpleNumber *)

END;

WITH FixedArityOperatorTable [6] DO

Name "Divide";

Arity 2;

Dynamic := FALSE;

Operand [1] 16; (* SimpleNumber *)

Operand [2] 16; (* SimpleNumber *)

END;

WITH FixedArityOperatorTable [7] DO

Name "Cosine";

Arity 1;

Dynamic := FALSE;

Operand [1] := 16; (* SimpleNumber *)

END;
WITH FixedArityOperatorTable [8] DO

Name "Sine";
Arity 1;

Dynamic := FALSE;

Operand [1] := 16; (* SimpleNumber *)

END;

WITH FixedArityOperatorTable [9] DO

Name "Identifier";

Arity 0;

Dynamic := TRUE;

ProcToCall := ScanIdentifier;

END;
WITH FixedArityOperatorTable [10] DO

Name "WriteLn";

Arity 1;

Dynamic := FALSE;

Operand [1] := 22; (* SimpleIdentifierlist *)

END;

WITH FixedArityOperatorTable [11] DO

Name "Identifierlist";

Arity 0;

Dynamic := FALSE;

END;
WITH FixedArityOperatorTable [12] DO

Name "Assignment";

Arity 2;

Dynamic := FALSE;

Operand [1] 21; (* SimpleIdentifier *)

Operand [2] 19; (* Expression *)

END;

33

ERL-0512-TR

WITH FixedArityOperatorTable [13] DO 0
Name "Compilation";

Arity 2;
Dynamic := FALSE;
Operand [1] 24; (* OptionalIdentifier *)

Operand [2] 25; (* SimpleStatementList *) •

END;
WITH VariableArityOperatorTable [14] DO

Name := "IdentifierList";
AtLeastOne := FALSE;

Operand := 21; (* SimpleIdentifier *)

END;
WITH VariableArityOperatorTable [15] DO

Name := "StatementList";

AtLeastOne := TRUE;

Operand := 23; (* Statement *)

END;

END Language.

Scanners.def

DEFINITION MODULE Scanners;

EXPORT QUALIFIED

ScanNumber,

ScanIdentifier,
SyntacticError,

SyntacticErrorMessage;

TYPE

SyntacticError = (Success);
(*Add enumerations for errors in above declaration.*)

PROCEDURE SyntacticErrorMessage(Error SyntacticError;
VAR Mess ARRAY OF CHAR);

PROCEDURE ScanNumber (VAR Text : ARRAY OF CHAR)

: SyntacticError;

PROCEDURE ScanIdentifier (VAR Text : ARRAY OF CHAR)

SyntacticError;

END Scanners.

ERL-0512-TR

Scanners.mod

IMPLEMENTATION MODULE Scanners;

FROM String IMPORT Assign;

PROCZDURE SyntacticErrorMessage

(Error : SyntacticError;

VAR Message : ARRAY OF CHAR);

VAR bool : BOOLEAN;

BEGIN

CASE Error OF

Success : Assign("Success",Message,bool);

ELSE

END (*CASE*);

END SyntacticErrorMessage;

PROCEDURE 3canNumber (VAR Text : ARRAY OF CHAR)
SyntacticError;

BEGIN

END ScanNumber;

PROCEDURE ScanIdentifier (VAR Text : ARRAY OF CHAR)

SyntacticError;

BEGIN

END ScanIdentifier;

END Scanners.

phylum_menus.c

#include <suntool/sunview.h>

#include <suntool/canvas.h>

Include necessary header files for attaching the
menus to the frame used by the view. */

#define min_phylum (16)

#define maxphylum (26)

#define no of phyla (11)
#define ph_menu(ph) phylummenu[ph - min_phylum]

Menu phylummenu[no of phyla];

void initphylum menus()

phmenu(16) = menucreate
MENUTITLEITEM, "SimpleNumber",
MENU ITEM, MENUSTRING, "Number", MENU-VALUE, 2, 0,

0);

ERL-0512-TR

phmenu(17) = menu create

MENUTITLEITEM, "BinaryOperations",
MENUITEM, MENUSTRING, "Plus", MENUVALUE, 3, 0,
MENUITEM, MENU STRING, "Minus", MENU VALUE, 4, 0,
MENUITEM, MENUSTRING, "Multiply", MENUVALUE, 5, 0,
MENUITEM, MENUSTRING, "Divide", MENUVALUE, 6, 0, S

0);
ph-menu(18) = menucreate (

MENUTITLEITEM, "TrigFunctions",

MENUITE., MENU STRING, "Cosine", MENU-VALUE, 7, 0,
MENUITEM, MENUSTRING, "Sine", MENUVALUE, 8, 0,

0);
phmenu(19) = menucreate (
MENUTITLEITEM, "Expression",

MENUITEM, MENU-STRING, "Number", MENU-VALUE, 2, 0,
MENUITEM,

MENUSTRING, "BinaryOperations",
MENUPULLRIGHT, phmeni(17), 0,

MENUITEM,

MENUSTRING, "TrigFunctions",
MENUPULLRIGHT, phmenu(18), 0,

0);
ph-menu(20) = menucreate (

MENUTITLEITEM, "Priority",
MENUITEM, MENUSTRING, "NULL", MENUVALUE, 1, 0,

MENUITEM,

MENUSTRING, "Expression",

MENUPULLRIGHT, ph-menu(19), 0,

0);
phnmenu(21) = menu_create (
MENUTITLEITEM, "SimpleIdentifier",

MENUITEM, MENU-STRING, "Identifier",MENUVALUE, 9, 0,

0);

ph-menu(22) = menu_create (

MENUTITLEITEM, "SimpleIdentifierlist",

MENUITEM, MENUSTRING, "Identifierlist", MENUVALUE, 11, 0,

0);
ph-menu(23) = menu_create (
MENUTITLEITEM, "Statement",

MENUITEM, MENU-STRING, "Assignment", MENU-VALUE, 12, 0,
MENUTITEM, MENUSTRING, "WriteLn", MENUVALUE, 10, 0,

0);
ph-menu(24) = menucreate (
MENUTITLEITEM, "OptionalIdentifier",

MENUITEM, MENUSTRING, "Identifier", MENUVALUE, 9, 0,

MENU-ITEM, MENU-STRING, "NULL", MENU-VALUE, 1, 0,

0);
ph-menu(25) = menu_create (
MENUTITLEITEM, "SimpleStatementList",

MENUITEM, MENUSTRING, "StatementList", MENU-VALUE, 15, 0,

ERL-0512-TR

0);

phmenu(26) = menu_create
MENU TITLE ITEM, "SimpleCompilation",

MENUITEM, MENUSTRING, "Compilation", MENU-VALUE, 1', 0,

0);

S

unsigned PopPhylumMenu(ph, code)

unsigned ph, code;
{

• unsigned store;

if (code == 1)
menuset(ph menu(ph),

MENUINSERT, 1,

menu create item(MENU STRING, "Comment Out",

* MENUVALUE, 1000, 0),

0);
if (code == 2)

menu set (ph menu(ph),

MENUINSERT, 1,

menu create item(MENUSTRING, "Comment In",

MENUVALUE, 1001, 0),
C);

store = (unsigned)menu_show(phmenu(ph),

canvas, event, 0);

if ((code == 1) 11 (code == 2))

menu set(ph menu(ph),

MENU REMOVE, 2, 0);

return(store);

}

0

ERL-0512-TR

S

0

S

S

THIS PAGE INTENTIONALLY LEFT BLANK

S

0

S

S

S

ERL-0512-TR

Appendix II Gumnut Meta Language Description

II.1 BNF Description

The BNF rules for the Gumnut meta-language are as follows:

language ::= language languagename is
chapter (chapter} starting-point

end language language-name
chapter ::= chapter chapter-name is

abstract syntax for chapter-name is
{definition)

end abstract syntax;
end chapter chapter name

definition ::= operatordefinition I phylum-definition
operatordefinition ::= plain-operator I dynamicdefinition
phylum definition ::= optionaldefinition I ordinary-definition
plain-operator ::= operator {operator declaration)
operatordeclaration ::= operatorname : (fixedstruct I variablestruct}
fixedstruct ::= {struct-item)
variablestruct ::= structitem list-type
list-type ::= + *

structitem ::= phylumname j simple-phylum I optionallynull_phylum
simplephylum ::= # operatorname
optionallynull_phylum ::= % operatorname
dynamicdefinition ::= dynamic operator (dynamic-operator)
dynamic-operator ::= operator-name is procedure-name ;
ordinary_definition ::= phylum [phylum list)
phylum-list ::= phylum-name : {phylum-struct) ;
phylum struct ::= operator-name I subset-item
subset item ::= @ phylum-name
optionaldefinition ::= optional phylum {phylum-list)
starting-point ::= starting phylum struct-item
name ::= letter ([underscore] letter)
letter ::A ... IZla.. I z

ERL-0512-TR

11.2 Syntax Charts

Language

-P. language- language name is chapter startingpon

Chapter

40

definition

Definition

operator definition

phylum definition

ERL-0512-TR

Operator definition

yddynamicoperator

Phylum definition

Plain operator

Operator declaration

Fixedd struct

Fixeducttitem

Variable struct

struct-item*

Iq +

ERL-0512-TR

Struct item

Dynamic operator

Phylum list

Phylum struct

operator-name

phylum-name

Starting point

Name

underscore

ERL-0512-TR

Appendix III Scanners Available

The following table (Table 1) lists the scanners currently implemented for use with MultiView,
which has been instantiated for the Ada programming language.

Procedure BNF Error Conditions

ScanIdentifier

identifier ::= letter {[underscore] letteror.digit] Zero length

letter ordigit Illegal character

::= letter I digit Error using underscore

ScanNumber

number decimalnumber I basednumber Zero length

decimalnumber Illegal character

::= integer [.integer] [exponent] Error uWrg underscore

integer ::= digit ([underscore] digit) Error using dot

exponent ::= E [+1 integer I E - integer Error in the exponent

basednumber

base # basedinteger Missing hash in based number
[.based_integerl # [exponent]

base integer

base integer

::= extendeddigit ([underscore] extended-digit)

extended-digit

digit I A I B I C I D I E I F

ScanString

string ::= (character) Invalid character

ScanChar

character-literal No character given

::= character Invalid character

Table I Table summarizing procedures supplied for scanning Ada lexical items.

Note that although the strict BNF form for character strings in Ada is:

string ::= "(character)"

The quotes (") need not be entered by the MultiView user because syntactic symbols are
implicit. Thus, any string can be entered. Also, there is usually some convention for entering the
quotes used to denote strings (in the case of Ada two quotes are placed together to represent one
quote). However, this is not needed as the environment knows that the string is terminated by
other conditions, not a quote. Similarly for the character literal, although the BNF rule is:

characterliteral ::= 'character'

The quotes (') are implicit and must not be entered.

nmumnnmmmnnma i luqmm u luinme i iunU l l i
n

ERL-0512-TR

DISTRIBUTION

Copy No

DEPARTMENT OF DEFENCE

Defence Science and Technology Organisation
Chief Defence Scientist
First Assistant Secretary Science Policy 1
Director General Science and Technology Programs
Counsellor, Defence Science, London Cnt Sht Only
Counsellor, Defence Science, Washington Cnt Sht Only
Defence Science Representative, Bangkok Cnt Sht Only
Scientific Adviser, Defence Research Centre, Kuala Lumpur Cnt Sht Only

Electronics Research Laboratory
Director, Electronics Research Laboratory 2
Chief, Information Technology Division 3
Chief, Communications Division 4
Chief, Electronic Warfare Division 5
Head, Software Engineering Group 6-7
Head, Information Systems Research Group 8
Head, Trusted Computer Systems Group 9
Publicity and Component Support Officer, Information
and Technology Division 10

Aeronautical Research Laboratory
Director, Aeronautical Research Laboratory I 1

Materials Research Laboratory
Director, Materials Research Laboratory 12

Surveillance Research Laboratory
Director, Surveillance Research Laboratory 13

Weapons Systems Research Laboratory
Director, Weapons Systems Research Laboratory 14
Head, Combat Systems Integration Group 15

Army Office
Scientific Adviser - Army 16
Director General Army Dvelopment (NSO), Russell Offices
for ABCA Standardisation Officers

UK ABCA Representative 17
US ABCA Representative 18
Canada ABCA Representative 19
New Zealand ABCA Representative 20

Air Office
Air Force Scientific Adviser 21

Joint Intelligence Organisation (DSTI)

Director of Departmental Publications 23

ERL-0512-TR

Libraries and Information Services
Librarian, Technical Reports Centre, Defence Central
Library, Campbell Park 24

Document Exchange Centre
Defence Information Services and Science Liaison Branch for:

Microfilming 25
United Kingdom, Defence Research Information Centre 26 - 27
United States, Defense Technical Information Center 28 - 39
Canada, Virector, Scientific Information Services 40
New Zealand, Ministry of Defence 41
National Library of Australia 42

Main Library, Defence Science and Technology Organisation
Salisbury 43 - 44

Australian Defence Force Academy Library 45
Library, Aeronautical Research Laboratories 46
Library, Materials Research Laboratories 47
Librarian, DSD, Melbourne 48

Office of Defence Production
Chief of Defence Production 49

Defence Industry and Materiel Policy Division
FASDIMP 50

ACADEMIC INSTITUTIONS
University of Adelaide, Dr Chris Marlin, Department of Computer Science 51
University of Queensland, Prof A.M. Lister, Department of Computer Science 52
Royal Melbourne Institute of Technology, Mr L. Jackson, Centre for
Advanced Telecommunications Technology 53

Australian National University, Prof R.B. Stanton, Department of Computer
Science 54

Author 55 - 56

Spares 57 - 62

DOCUMENT CONTROL DATA SHEET

Security classification of this page: UNCLASSIFIED

1 DOCUMENT NUMBERS 2 I SECURITY CLASSIFICATION

a. Complete
AR Document: Unclassified

Number: AR-006-402 b. Title in

Isolation: Unclassified

Series c. Summary in Unclassified
Number: ERL-0512-TR Isolation:

Other 3 FDOWNGRADING/DELIMITING INSTRUCTIONS

Numbers: N/A

4 [TITLE

GUMNUT SPECIFICATION AND REPORT

5I PERSONAL AUTHOR(S) 6 rDOCUMENT DATE M
I E MAY 1990

R.A. ALTMANN,
M.A. FITZGERALD and 7_J 7.1 TOTAL NUMBER

P.S. KEAYS OFPAGES 43

7.2 NUMBER OF
REFERENCES 9

8 18.1 CORPORATE AUTHOR(S) 9 F REFERENCE NUMBERS

a. Task: N/A
ELECTRONICS RESEARCH LABORATORY

b. Sponsoring Agency: N/A

8.2 DOCUMENT SERIES 1
and10 COST CODE

TECHNICAL REPORT 0512 N/A

11 r IMPRINT (Publishing organisation) 12 COMPUTER PROGRAM(S)
FL- (Title(s) and language(s))

DEFENCE SCIENCE AND
TECHNOLOGY ORGANISATION

13 IRELEASE LIMITATIONS (of the document)

APPROVED FOR PUBLIC RELEASE

89/49

Security classification of this page: UNCLASSIFIED

Security classification of this page: UNCLASSIFIED

14 1 ANNOUNCEMENT LIMITATIONS (of the information on these pages)

NO LIMITATION

15 D DESCRIPTORS 16 FCOSATI CODES

a. EJC Thesaurus
Terms PROGRAMMING LANGUAGES

TRANSLATOR ROUTINES 1205
SOFTWARE TOOLS

b. Non-Thesaurus
Terms

META-LANGUAGE

17 SUMMARY OF ABSTRACT
(if this is security classified, the announcement of this report will be similarly classified)

GUMNUT IS A PART OF MULTIVIEW, AN INTEGRATED PROGRAMMING ENVIRONMENT.
BY MEANS OF A NUMBER OF TOOLS OPERATING POSSIBLY CONCURRENTLY, OVER A
DISTRIBUTED WORKSTATION NETWORK, MULTIVIEW SUPPORTS THE DEVELOPMENT
OF SOFTWARE IN A GROWING NUMBER OF PROGRAMMING LANGUAGES. GUMNUT
AND ITS ASSOCIATED META-LANGUAGE (OR LANGUAGE TO DESCRIBE A LANGUAGE)
IS THE TOOL WHICH ALLOWS MULTIVIEW TO BE EXTENDED FOR A NEW
PROGRAMMING LANGUAGE. THIS REPORT DESCRIBES GUMNUT AND THE
META-LANGUAGE.

89/49

Security classification of this page: WNLASIFIE-

